Contents

Cell Structure **Diffusion & Osmosis** Carbohydrates **Lipids and Proteins Enzymes** Photosynthesis Leaves Diet **Digestion Part 1 Digestion Part 2 Transport in Plants** Water Uptake & Transpiration The Heart **Blood Vessels & Blood**

Created by lanebiologytutor.com

Cell Structure

Organisms can be multicellular or	Every ty	ype of cell has a
on the outside. T	he jelly like substance inside c	cells which is around 70% water is
called the Sm	all structures which do a parti	cular job inside cells like
chloroplasts and mitochondria are ca	alled F	Plant cells contain a cell wall
made of which	is very strong and stops the c	ell from
Also, in plants cells there is cell sap	which can be found inside a	In plant
cells, the contain	a coloured pigment called	which traps
sunlight for photosynthesis. The chlo	roplasts can contain	grains. The genetic
information is stored in the	which contains lots o	f strands of DNA which forms

BIZARRE BIOLOGY: There are 10 times more bacterial cells in your body than human cells.

Questions

1. Describe 3 features that are found in plant cells but not animal cells. (3)

2. Suggest a reason plants cells have cell walls. (1)

Extension

What type of organelle (structure) would you see a lot of in a palisade cell of a leaf and why?

Knowledge Boss

Why is chlorophyll green? Use your physics knowledge for this answer.

Cell Structure

Org	anisms can be	multicellular or		Every t	ype of cell has a	
		on the outside. T	he jelly like su	ıbstance inside (cells which is around	70% water is
call	ed the	Sm	all structures	which do a part	icular job inside cells	like
chlo	proplasts and m	nitochondria are c	alled	·	Plant cells contain a	cell wall
mad	de of	which	is very strong	and stops the d	cell from	·
Also	o in plants cells	is cell sap which	can be found	inside a	In pla	ant cells, the
		contain a coloure	d pigment call	ed	which traps sun	light for
					ains. The genetic info	
-	-	whic		_	_	
cel	lulose cyto membrane	oplasm vac unicellular	uole chi nucleus	romosomes organelles	chloroplasts bursting	starch chlorophyll
	BIZARRE BIOLO	GY : There are 10 ti	nes more hacte	rial cells in vour l	body than human cells.	
					oody man namen cene.	
	Questi	ons.				
	-					
1.	Describe 3 feat	tures that are fou	nd in plant cel	ls but not anıma	l cells. (3)	
•	6			(4)		
2.	Suggest a reas	on plants cells ha	ive cell walls.	(1)		

Extension

score

What type of organelle (structure) would you see a lot of in a palisade cell of a leaf and why?

Knowledge Boss

Cell Structure

Unicellular
Membrane
Cytoplasm
Organelles
Cellulose
Bursting
Vacuole
Chloroplasts
Chlorophyll
Starch
Nucleus
Chromosomes
1. • (large) vacuole • cell wall • chloroplasts
2. Provide strength/structure/ to prevent bursting
Extension : Chloroplasts as it is the part of the leaf which carries out the most photosynthesis
Knowledge Boss: Sunlight contains all colours of light. Each colour has a different wavelength. Chlorophyll is grebecause it reflects the green wavelength light and absorbs the other colours

Diffusion and Osmosis

Gases enter and leave cells by	because the	molecules are small enough to
pass through the Diffusion always goes down a concentration		
Osmosis is the movement of water molecular	ules through a partia	ally membrane. Water will
move from a high water	to a low	potential. A high water potential
means a concentration of sugar	/salt or other dissol	lved substances. A plant cell which has
absorbed lots of water is said to be	The ou	itward pressure of the full cytoplasm
exerts a high pressure. A plant	cell which has lost	a lot of water is said to be
and the plant becomes flo	ppy and	$_{}$. If the cytoplasm shrinks so much
and pulls apart from the cell wall the cell	becomes	 -

BIZARRE BIOLOGY: Fish need to excrete large quantities of salt to prevent their cells becoming too salty.

Questions

1. Define diffusion (1)

2. Define Osmosis. (2)

Extension

Why can some particles diffuse through membranes but others can't?

Knowledge Boss

Created by lanebiologytutor.com

Diffusion and Osmosis

Gases enter and leave cells by	b	ecause the mole	cules are small er	nough to
pass through the	Diffusion alway	ys goes down a c	oncentration	·
Osmosis is the movement of water	molecules thro	ough a partially .	men	nbrane. Water will
move from a high water	to a low	po	tential. A high wat	er potential
means a concentration of	f sugar/salt or	other dissolved	substances. A pla	nt cell which has
absorbed lots of water is said to be	9	The outwar	d pressure of the f	full cytoplasm
exerts a high pressure. A plant cell which has lost a lot of water is said to be				
and the plant beco	mes floppy and	l	f the cytoplasm sh	rinks so much
and pulls apart from the cell wall t	he cell become	s		
turgid permeable turgor low				plasmolysed flaccid

BIZARRE BIOLOGY: Fish need to excrete large quantities of salt to prevent their cells becoming too salty.

Questions

1. Define diffusion (1)

2. Define Osmosis. (2)

Extension

Why can some particles diffuse through membranes but others can't?

Knowledge Boss

Created by

Explain why the rate of diffusion of carbon dioxide into a leaf is higher on a warm day.

Diffusion and Osmosis

iffusion
embrane
radient
ermeable
otential
/ater
ow
urgid
urgor
laccid
/ilts
lasmolysed
ne movement of molecules from an area of higher concentration to an area of lower oncentration
The diffusion of water molecules from a high water potential/dilute solution to a low water potential/concentrated solution Through a partially permeable membrane

Knowledge Boss:

Extension:

Created by

Only particles which are small enough can pass through the cell surface membrane.

The molecules of carbon dioxide have more kinetic energy and therefore move faster with more random collisions and more enters the leaf.

Carbohydrates

Carbohydrates are made of	These contain carbon, hydrogen and oxygen.	
The most common type is glucose. Glucose has the chemical formula is $C_6H_{12}O_6$. Sugars are		
in water and taste sweet. A	single sugar is called a	
, two bonded tog	ether make a and	
many bonded together is called a	Sucrose is the common	
sugar in your kitchen and is made of fructos	e and bonded together	
(disaccharide).		
The three types of carbohydrate are glycoge	n, starch and cellulose is the	
storage of energy in plant cells	is the storage of energy in animal cells	
and makes the plant ce	l walls and is for structure and strength. The test	
for a reducing sugar (glucose/maltose) use	s solution. It is a	
colour and then changes	to when heated if a	
redusing Rugorisor escultose is the most abundant biological molecule on Earth.		

Questions

1. What is the test for starch and what are the colour changes? (2)

2. How would you prove a substance is not a reducing sugar? (2)

Extension

What is the ratio of the elements C, H, O in glucose?

Knowledge Boss

Carbohydrates

Carbohydrates are made of	. These contain carbon, hydrogen and	
oxygen. The most common type is glucose. Glucose has the chemical formula is $C_6H_{12}O_6$.		
Sugars are in water and tas	te sweet. A single sugar is called a	
, two bonded tog	ether make a and	
many bonded together is called a	Sucrose is the common sugar	
in your kitchen and is made of fructose and	bonded together (disaccharide).	
The three types of carbohydrate are glycoge	n, starch and cellulose is the	
storage of energy in plant cells	is the storage of energy in animal cells	
and makes the plant cel	l walls and is for structure and strength. The test	
for a reducing sugar (glucose/maltose) uses	s solution. It is a	
colour and then changes t	o when heated if a	
	ride orange glycogen soluble disaccharide blue sugars	

BIZARRE BIOLOGY Cellulose is the most abundant biological molecule on Earth.

Questions

- 1. What is the test for starch and what are the colour changes? (2)
- 2. How would you prove a substance is not a reducing sugar? (2)

score /16

Extension

What is the ratio of the elements C, H, O in glucose?

Knowledge Boss

Created by lanebiologytutor.com

Carbohydrates

Sugars

Soluble

Monosaccharide

Disaccharide	
Polysaccharide	
Glucose	
Starch	
Glycogen	
Cellulose	
Benedict's	
Blue	
orange	
Questions 1. • Iodine solution • Goes from yellow to dark blue/blac	k
2.Test is with Benedict's solutionIt will stay blue colour	
Extension C,H,O = 1:2:1	
Knowledge boss Sugar Small/soluble	Created by

lanebiologytutor.com

Small/soluble

Lipids and Proteins

Lipids (fats), like carbohydrates, also contain just carbon, hydrogen and oxygen. A molecule		
of is bonded to three Fats		Fats are
	in water. Fats which are liquid at	t room temperature are called
·	Fats release more	per gram than carbohydrate
(about double) but are only used when carbohydrate has been used up first. Fats are used for		
energy storage and		
Proteins contain carbon, hydrogen and oxygen but also These		
Proteins contain ca	arbon, hydrogen and oxygen but also	These
	arbon, hydrogen and oxygen but also lecules called	
elements form mol	, ,	which join together to
elements form mol	lecules called	which join together to ferent ones and they bond together
elements form mol form a in different combin	lecules called There are 20 dif	which join together to ferent ones and they bond together tein. Proteins are not normally

BIZARRE BIOLOGY: We have around 100,000 different proteins in our body and they normally last less than two days.

Questions

1. Bullet point the procedure for testing lipids and state what colour is observed? (4)

2. What is the test for protein and what are the colour changes? (2)

Extension

Compare how the structure of proteins (polypeptides) are similar to carbohydrates (polysaccharides).

Knowledge Boss

Created by

Why is it beneficial to have 20 different amino acids? Remember that there are three carbohydrates which are all made of just the same molecule, glucose.

Lipids and Proteins

Lipids (fats), like carbohydrates, also contain just carbon, hydrogen and oxygen. A molecule of	
is bonded to three Fats are	
in water. Fats which are liquid at room temperature are called	
Fats release more per gram than carbohydrate	
(about double) but are only used when carbohydrate has been used up first. Fats are used for	
energy storage and	
Proteins contain carbon, hydrogen and oxygen but also These	
elements form molecules called which join together to form	
a There are 20 different ones and they bond together in	
different combinations to forms a particular type of protein. Proteins are not normally used for	
but for producing cells and repair. Proteins can be	
oils polypeptide insulation energy (x2) enzymes amino acids glycerol new nitrogen fatty acids structural insoluble	

BIZARRE BIOLOGY: We have around 100,000 different proteins in our body and they normally last less than two days.

Questions

1. Bullet point the procedure for testing lipids and state what colour is observed? (4)

2. What is the test for protein and what are the colour changes? (2)

Extension

score /19

Compare how the structure of proteins (polypeptides) are similar to carbohydrates (polysaccharides).

Lipids and Proteins

Glycerol

Fatty acids

Insoluble

Dils	
Energy	
nsulation	
Nitrogen	
Amino acids	
Polypeptide	
Energy	
New	
Structural	
Enzymes	
l. Emulsion test Add lipid to ethanol Then add water Goes cloudy/milky	
2. Biuret test From blue to purple/lilac	
Extension: They are made of repeating units/more Form long chains Contain C,H,O	onomers
Knowledge Boss:	Created by lanebiologytutor.com

It allows virtually unlimited sequences of amino acids which means there are millions of

Enzymes

Enzymes are	because they	speed up reactions. All enzym	ies are	
and help with		Substrate mol	ecules fit into the	
	_ of the enzyme	in a lock a key model. The sub	strate is	
to the	active site becau	use only that substrate will en	ter and bond to the	
active site which forms an enzyme-su	ıbstrate	When the substr	ate has been	
converted into	_ the enzyme is	able to accept another substr	ate as it does not	
get used up. Enzymes are sensitive to	changes to	and	and	
work best when these are at their optimum level. If these conditions are too high or low then enzymes				
can become whi	ich means the	holdin	g the active site in	
its precise 3D shape break and the en	zyme unravels a	nd stops working. The majorit	y of enzymes in	
cells-have-around -37°C	and pH7 as their	optimum		

BIZARRE BIOLOGY: The enzyme catalase can break down around 40 million molecules of substrate in one second.

Questions

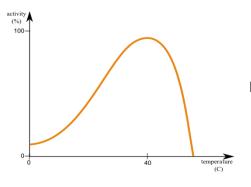
1. Why does activity increase from $0-40^{\circ}C$ (3)

2. Explain what happens to the enzyme after 45 °C (2)

Extension

What is meant by optimum temperature?

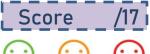
Knowledge Boss


Enzymes become denatured when they become too hot. What do you think happens when they become too cold? (think of bonds, active site and kinetic energy)

Enzymes

Enzymes are	bed	cause they speed up r	eactions. All enzyme	es are
	and help with		Substrate mole	cules fit into the
	of th	ne enzyme in a lock a	key model. The sub	strate is
	to the active	site because only th	at substrate will ent	er and bond to the
active site which form	ıs an enzyme-substra	te	When the substra	te has been
converted into	the	enzyme is able to acc	cept another substra	te as it does not
get used up. Enzymes	are sensitive to chan	ges to	and	and
work best when these	e are at their optimum	level. If these conditi	ions are too high or l	ow then enzymes
can become	which m	eans the	holding	the active site in
its precise 3D shape b	oreak and the enzyme	unravels and stops v	vorking. The majority	of enzymes in
cells ha BIZARRE BIOLOGY : The e				
•	ins bonds omplex active	•		

Questions


1. Why does activity increase from 0-40°C (3)

Explain what happens to the enzyme after 45 °C (2)

Extension

What is meant by optimum temperature?

Knowledge Boss

Enzymes become denatured when they become too hot. What do you think happens when they become too cold? (think of bonds, active site and kinetic energy)

Enzymes

Catalysts

Proteins
Metabolism
Active site
Complementary
Complex
Product
pH/temperature
pH/temperature
Denatured
Bonds
Human
1.
 As temperature increases the substrate and enzymes have more kinetic energy So there are more successful collisions between substrate and active site And therefore product is made faster
 the high temperature breaks the bonds holding the active site in shape The enzyme becomes denatured
Extension

Knowledge Boss

(per unit of time)

The bonds stays intact/unbroken as low temperature do not disrupt them but the kinetic energy is so low that the substrate does not lenterable active site and no product is made.

The best temperature at which the enzyme is able to convert the most substrate into product

Photosynthesis

Plant cells trap the e	nergy from the sun ins	ide a pigment whi	ich it makes called	
	The sun's energy is	used to make wa	ater and carbon dio	xide
togethe	r. What is produced is _		_ which is used for	its energy
and	which is released a	s a waste produc	t	energy is
eventually converted	l to e	nergy. The glucos	e can be used dire	ctly in
0	r converted and stored	as	for energy	storage or
made into	for transport. The	starch can be st	ored inside granul	es inside the
	The glucose	can also be mad	e into the structura	al
polysaccharide		. Sucrose is bett	er to transport aro	und the plant
than glucose becaus	e it is less	but still quite	soluble. When insi	de the cell, the
sucrose can be brok	en and converted into _	·		

BIZARRE BIOLOGY: There is a cool animal which can also photosynthesise. Ask your teacher to show you a photo.

Questions

1. Write the word equation and below it the balanced symbol equation for photosynthesis. (4)

2. Which inorganic substances does a plant use to make carbohydrate? (2)

Extension

Explain why the transfer of energy from light to chemical energy in plant cells is essential for life on Earth.

Created by

There is an old saying that talking to your plans helps them grow. Do you think this could be correct and why or why not correct?

Photosynthesis

Plant cells trap the energy from the sun inside a pigment which it makes called					
	The su	ın's energy is	s used to make	water and carboi	n dioxide
to	gether. What is	produced is		which is use	d for its energy
and	which	is released a	as a waste prod	uct	energy is
eventually conv	erted to	€	nergy. The gluc	ose can be used	directly in
or converted and stored as for energy storage or					
made into for transport. The starch can be stored inside granules inside the					
The glucose can also be made into the structural					
polysaccharide Sucrose is better to transport around the plant					
than glucose because it is less but still quite soluble. When inside the cell, the					
sucrose can be broken and converted into					
respiration	cellulose	react	reactive	starch (2x)	chlorophyll

BIZARRE BIOLOGY: There is a cool animal which can also photosynthesise. Ask your teacher to show you a photo.

Questions

Write the word equation and below it the balanced symbol equation for photosynthesis. (4)

2. Which inorganic substances does a plant use to make carbohydrate? (2)

Extension

Explain why the transfer of energy from light to chemical energy in plant cells is essential for life on Earth.

Created by

There is an old saying that talking to your bians the ps them grow. Do you think this could be correct and why or why not correct?

Photosynthesis

```
Chlorophyll
React
Glucose
Oxygen
Sunlight
Chemical
```

Respiration Starch

Sucrose

Chloroplasts

Cellulose

Reactive

(1 mark)

(1 mark)

Starch

(light)

1. carbon dioxide + water dlucose + oxvgen
$$6CO_2 + 6H_2O \xrightarrow{light} C_6H_{12}O_6 + 6O_2$$
 (1 mark)

2. Water Carbon dioxide

Knowledge Boss: google a photo of the green sea slug.

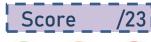
Extension:

Plants start food chains on land because they capture the sunlight energy and convert it into carbohydrate/sugar/food

Knowledge Boss:

Students who give a reason may say yes because of the extra CO_2 it is receiving from the person which is logical thinking but there is enough CO_2 in the air for this not have an affect.

However:


In a study performed by the Royal Horticultural Society, researchers discovered that talking to your plants really can help them grow faster. As they respond to the vibrations. They also found that plants grow faster to the sound of a female voice than to the sound of a male voice (March 2021)

Leaves

Leaves have a large	and are	to maximise light
absorption. They have a top a	nd bottom layer called the	which do not contain
aı	nd function as protection for the inner ce	ells. The wax cuticle on the
surface of the	epidermis helps to prevent	of water. On the
lower epidermis there are sn	nall openings called	The middle layers are called
the a	and contain lots of	The
mesophyll cells are packed to	ogether in rectangular arrangements and	d the
mesophyll are loosly packed	and are rounder. This allows air spaces	which help the
of gases	. Running through the mesophyll are	vessels for
	tubes for sucrose transport aw ce leaves are the worlds most popular salad	

2. What are stomata (stoma) and guard cells and what do they do? (2)

Extension

Explain why a transparent epidermis is an adaptation for photosynthesis.


Knowledge Boss

Leaves

Leaves have a large		and are	to maximise light		
absorption. They have a top	and bottom layer called	the	which do not contain		
	and function as protection	on for the inner cells.	The wax cuticle on the		
surface of the	epidermis helps to	prevent	of water. On the		
lower epidermis there are	small openings called	·	The middle layers are called		
the	and contain lots of		The		
mesophyll cells are packed together in rectangular arrangements and the					
mesophyll are loosly packed and are rounder. This allows air spaces which help the					
of gases. Running through the mesophyll are vessels for					
water transport_andtubes for sucrose transport away from the leaf					
• • • • • • • • • • • • • • • • • • • •	•	•	palisade mesophyll		
surface area phloe	m thin	stomata er	oidermis spongy		

BIZARRE BIOLOGY: Lettuce leaves are the worlds most popular salad ingredient.

I. Label the structures of the leaf. (7)

2. What are stomata (stoma) and guard cells and what do they do? (2)

Extension

Explain why a transparent epidermis is an adaptation for photosynthesis.

Knowledge Boss

Created by

Explain why the leaves on some trees in aidigm high a brown colour.

Leaves

Surface area Mesophyll

Thin Chloroplasts

Epidermis Palisade

Chloroplasts Spongy

Upper Diffusion

Evaporation Xylem

Stomata Phloem

- 1. Upper epidermis
- 2. Spongy mesophyll
- 3. palisade mesophyll
- 4. lower epidermis
- 5. Guard cells
- 6. Stomata (stoma)

2.

- Stomata are the holes which are created by the guard cells which allow diffusion of gases/CO₂, O₂.
- Guards cells open and close to create the stomata

Extension:

- Allows as much light as possible to pass through the epidermal layer/cells
- To the palisade layer/cells below

Knowledge Boss:

They absorb their chlorophyll back into the inner tree parts to conserve it. The leaves lose their chlorophyll and turn brown

Diet

Animals need to eat to get energy. There are 7 nutrients which animals need and if they get it
in the correct quantities then it is a diet. The 3 nutrients needed in the
largest quantity are carbohydrates, and are
organic substances and are inorganic. Organic means it contains carbon and
hydrogen. These are needed in small amounts. A disease is when you do not
eat enough of a particular nutrient. If you lack which is found in
then you can get scurvy. If you lack found in animal foods then you can get
which means you have soft bones. A lack of means you could get
anaemia which affects your and your ability to transport oxygen.
When people take in way more energy than they consume then they can become
is caused by not eating a balanced diet. Two
extremes examples of malnutrition are and BIZARRE BIOLOGY: Negative calorie foods do not exist. Even celery gives a little energy to your body.
Ouestions

- 1. Why is fibre important in your diet? (1)
- 2. List the three nutrients in the order of energy that they contain. (1)

Score /18

Extension

Why can we not digest cellulose which makes up fibre?

Knowledge Boss

Animals need to eat to get energy. There are 7 nutrients	s which animals need and if they get it
in the correct quantities then it is a	diet. The 3 nutrients needed in the
largest quantity are carbohydrates, and _	are
organic substances and are inorganic. O	Organic means it contains carbon and
hydrogen. These are needed in small amounts. A	disease is when you do not
eat enough of a particular nutrient. If you lack	which is found in
then you can get scurvy. If you lack found in	n animal foods then you can get
which means you have soft bones. A lack	of means you could get
anaemia which affects your a	and your ability to transport oxygen.
When people take in way more energy than they consur	me then they can become
is caus	sed by not eating a balanced diet. Two
extremes examples of malnutrition are ritamin C haemoglobin vitamins obese iron ma	and
<u>ickets marasmus citrus fruits proteins k</u>	wasniorkor deficiency minerals

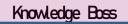
BIZARRE BIOLOGY: Negative calorie foods do not exist. Even celery gives a little energy to your body.

Questions

1. Why is fibre important in your diet? (1)

2. List the three nutrients in the order of energy that they contain. (1)

Score__



Extension

Why can we not digest cellulose which makes up fibre?

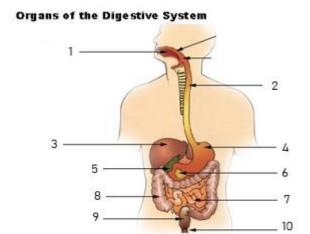
Created by lanebiologytutor.com

Consider how you could calculate how much energy is in a type of food.

Knowledge Boss:

Balanced
-ats
Proteins
/itamins
Minerals
Deficiency
/itamin C
Citrus fruits
/itamin D
Rickets
ron
Haemoglobin
Obese
Malnutrition
Kwashiorkor
marasmus
Helps food move along alimentary canal/small/large intestine Helps prevent constipation
2. Most first: Fats Carbohydrates Oroteins
Extension: Humans do not have the enzyme cellulase to break down cellulose

lanebiologytutor.com


Dry the food. Get a standard quantity like 1g and burn it in something surrounded by a certain volume of water. Measure how much the temperature of the water increases.

is taking in food into the alimentary canal. Breaking down large				
molecules into small molecules is called				
Those small molecules passing int	to the blood is called			
The undigested food material which is removed from the body is called				
This process is calledwhich is not to be confused with				
which is the removal of metabolic waste (made by cells) from the body.				
There are two types of digestion: which is done by the teeth and				
which churns up the food but there is no change. And				
chemical digestion which is done by	and involves a chemical change.			

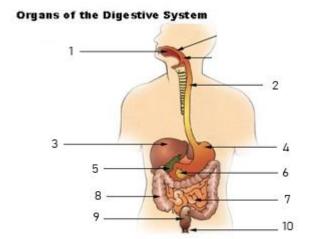
BIZARRE BIOLOGY Our large brains use so much energy it means our intestinal tract which also uses lots of energy has been reduced in length through evolution. This is the Expensive Tissue hypothesis.

Questions

1. Label the structures.

2. What is chemical digestion? (2)

Extension


Consider why proteins, fats and carbohydrates need to be broken down?

Knowledge Boss

is taking in food into the alimentary canal. Breaking down large					
molecules into small molecules is called				d	
	Those sma	all molecules pa	ssing into the blo	od is called	·
The undigeste	d food materia	l which is remov	ed from the body	is called	·
This process i	This process is calledwhich is not to be confused with				
which is the removal of metabolic waste (made by cells) from the body.					
There are two types of digestion: which is done by the teeth and					
which churns up the food but there is no change. And					
chemical digestion which is done by and involves a chemical change.					
mechanical	egestion	enzymes	insoluble ingestion	absorption	faeces

BIZARRE BIOLOGY: Our large brains use so much energy it means our intestinal tract which also uses lots of energy has been reduced in length through evolution. This is the Expensive Tissue hypothesis.

Questions

- 1. Label the structures.
- 2. What is chemical digestion? (2)

Extension

Consider why proteins, fats and carbohydrates need to be broken down?

Knowledge Boss

Ingestion Egestion

Insoluble Excretion

Soluble Mechanical

Digestion Stomach

Absorption Chemical

Faeces enzymes

1.

- 1. mouth
- 2. oesophagus
- 3. liver
- 4. stomach
- 5. gall bladder
- 6. pancreas
- 7. small intestine
- 8. large intestine
- 9. rectum
- 10. anus

2.

- Large molecules are broken down into smaller
- via chemical reactions
- enzymes are involved

Extension:

They are too large biological molecules to pass though the walls of the small intestine into the blood and are also insoluble. They must be broken down into smaller, soluble molecules.

Knowledge Boss:

Yes. Bread contains starch because the flour comes from plant cells. Amylase in the saliva breaks down the starch into glucose which tastes sweet.

Chemical digestion is carried ou	ut by made in the mou	th, stomach and pancreas.
The enzymes from the	are released into the small inte	stine and break down
large insoluble food molecules	into small soluble molecules to be absorbed	into the
The stomach produces	which lowers the pH to a	around pH 1-2. This is to
kill any harmful microorganism	s which may be in the food. The small intesti	ne absorbs
and water ar	nd the large intestine just absorbs	The undigested food is
stored in the rectum as	and is egested.	
The liver produces	which is stored in the	and released
into the small intestine. It	fats making them soluble s	o the enzyme
can break th	em down. The pancreas produces all three e	nzymes and pacreatic
juice which is	into the duodenum part of the small intes	stine. The small intestine
are covered in	to increase surface area and the	increase it even

more BIZARRE BIOLOGY: Our digestive system is around 8 metres long and 6m is the small intestine.

Questions

1.	Enzyme	Where produced	Substrate	Final product
		salivary gland pancreas		
	protease			amino acids
2. W	/hat adaptations does	a villus have for effici	fats and oils ent absorption? (3) (lipids)	

Extension

Why is the pancreatic juice alkaline?

Score /25

Knowledge Boss

Chemical digestion is carried out by made in the mouth, stomach and pancreas			
The enzymes from the	_ are released into the small intestine and break down		
large insoluble food molecules into small	soluble molecules to be absorbed into the		
The stomach produces	which lowers the pH to around pH 1-2. This is to		
kill any harmful microorganisms which m	y be in the food. The small intestine absorbs		
and water and the larg	intestine just absorbs The undigested food is		
stored in the rectum as and	is egested.		
The liver produces which is stored in the and released			
into the small intestine. It	fats making them soluble so the enzyme		
can break them down.	he pancreas produces all three enzymes and pacreatic		
juice which is into the duodenum part of the small intestine. The small intestine			
are covered in to increase surface area and the increase it even			
more			
lipase water pancreas vill microvilli faeces blood	gall bladder enzymes hydrochloric acid alkaline bile food emulsifies		

BIZARRE BIOLOGY: Our digestive system is around 8 metres long and 6m is the small intestine.

Questions

1.	Enzyme	Where produced	Substrate	Final product
		salivary gland pancreas		
	protease			amino acids
2 W/h	at adantations does a	villus have for efficie	nfatscantholiky)	,

2. What adaptations does a villus have for efficient absorption?i(3) (lipids)

Score <u>/2</u>

Why is the pancreatic juice alkaline?

Knowledge Boss

Created by

Consider what would be the consequences if our digestive system were shorter.

Enzymes Bile

Pancreas Gall bladder

Blood Emulsifies

Hydrochloric acid Lipase

Food Alkaline

Water Villi

Faeces Microvilli

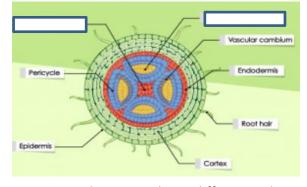
(1 mark per box)

Enzyme	Where produced	Substrate	Final product
amylase	salivary gland pancreas	starch	glucose
protease	Stomach pancreas	protein	amino acids
lipase	pancreas	fats and oils (lipids)	Fatty acids and glycerol

2.

- Large surface area
- Good blood supply/large network of capillaries
- Lacteal to absorb lipid molecules

Extension


Created by

To neutralise the acidic food from the small intestine would destroy the tissues.

Transport in Plants

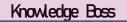
There are two typ	es of transport vessel in plants, the	which transports	
	_ and dissolved mineral ions and the	which transport dissol	ved food
materials like	and amino acids. The xyl	em form long, hollow tubes and ar	e made
from	cells. The substances in the xyle	m always tavel fr	rom roots
to leaves. Phloem	n cells are living and transport substance:	s in both directions. The transport (of these
substances in the	e phloem is called	and occurs in	
	directions. The leaves which carry out	t photosynthesis and therefore trar	nslocating
the sucrose and a	amino acids is called a	The part of the plant to wh	nich these
are being translo	cated to is called a	which is often the roots as they	y grow a
lot and can not ca	arry out photosynthesis. The phloem and >	cylem tissue when found close to e	ach other
is called the	• The Mesquite tree which survive in very arid		 60m into

Questions

the ground.

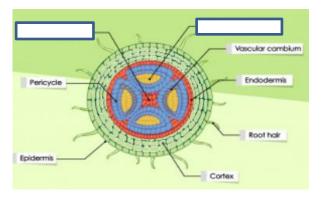
1. Label the xylem and phloem on the diagram. (2)

2. List 2 similarities and two differences between xylem and phloem vessels. (4)



Extension

Explain why xylem tubes are hollow.



Transport in Plants

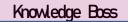
There are two type	es of transport ve	ssel in plants	, the	w	hich transp	orts
	and dissolved m	ineral ions an	d the	w	hich transp	ort dissolved food
materials like	a	nd amino acio	ls. The xyler	m form long	, hollow tub	es and are made
from	cells. The	substances i	n the xylem	always tave	el	from roots
to leaves. Phloem	cells are living ar	nd transport s	ubstances i	in both direc	tions. The t	ransport of these
substances in the	phloem is called			aı	nd occurs in	า
	directions. The	leaves which	carry out p	hotosynthes	sis and ther	efore translocating
the sucrose and a	mino acids is call	ed a		The p	art of the p	lant to which these
are being transloc	ated to is called a	1		_ which is o	ften the roo	ots as they grow a
lot and can not ca		•	•		hen found	close to each other
translocation	phloem	sink	vascular	suc		•

BIZARRE BIOLOGY: The Mesquite tree which survive in very arid (dry) places can have roots which go 60m into the ground.

Questions

1. Label the xylem and phloem on the diagram. (2)

2. List 2 similarities and two differences between xylem and phloem vessels. (4)



Extension

Explain why xylem tubes are hollow.

Created by

Consider the advantages of xylem tubes being made of clead cells.

Transport in Plants

Xylem

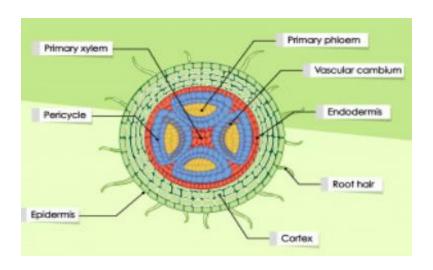
Water

Phloem

Sucrose

Dead

Upwards


Translocation

Both

Source

Sink

Vascular

2.

Similarities

- Tubes
- Transport substances around a plant

Differences

- Xylem one direction, phloem both directions
- Xylem has some dead cells, phloem has living cells
- Xylem transports water and ions, phloem food substances
- Xylem tubes are hollow, phloem is not hollow

Extension:

To allow the water and ions to travel easily through the tubes with being restricted by the cell contents like cytoplasm and organelles.

Knowledge Boss:

- If they were living they would require water and there would be less transported to the leaves.
- Living cells require energy to maintain.
- They are dead because they can be strengthened with lignin which is a structural polysaccharide to provide plant support

lanebiologytutor.com

Water Uptake and Transpiration

Plants absorb water through the	cells which are adapted for
efficient water uptake because they have a high	Water enters by
due to there being a higher	in the
than inside the cells. Mineral ions like nitrates ent	ter by
because normally their concentration is higher inside cells than in	the soil.
The loss of water vapour which mostly occur in the leaves is called	d
Water out of the cells in the leaves and	out of
the air spaces inside the leaves into the atmosphere through the ho	oles called
. The movement of water from roots, xylem, mesophyll and out the	stomata is known as the
Humidity and	can affect the
of transpiration.	
temperature active transport root hair evaporates	

BIZARRE BIOLOGY Plants can grow without soil as long as their roots are placed in a nutrient solution. This type of plant cultivation is known as Hydroponics.

Questions

Why would the stomata in plants close at night? (3)

2. List some points as to why a plant needs to carry out transpiration (3)

Extension

What effect will placing a plastic bag over a plant have and why?

Created by

Consider why this branch with leaves in this potometer would not be able to grow so well even when placed in sunlight.

Water Uptake and Transpiration

Plants absorb water through the	cells which are adapted for
efficient water uptake because they have a high	Water enters by
due to there being a higher	in the
than inside the cells. Mineral ions like nitrates e	nter by
because normally their concentration is higher inside cells than i	n the soil.
The loss of water vapour which mostly occur in the leaves is call	ed
Water out of the cells in the leaves ar	nd out of
the air spaces inside the leaves into the atmosphere through the	holes called
. The movement of water from roots, xylem, mesophyll and out th	ne stomata is known as the
Humidity and	can affect the
of transpiration.	

BIZARRE BIOLOGY: Plants can grow without soil as long as their roots are placed in a nutrient solution. This type of plant cultivation is known as Hydroponics.

Questions

I. Why would the stomata in plants close at night? (3)

2. List some points as to why a plant needs to carry out transpiration (3)

Extension

What effect will placing a plastic bag over a plant have and why?

Water Uptake and Transpiration

surface area
osmosis
water potential
soil
active transport
Transpiration
Evaporates
Diffuses
Stomata
Transpiration stream
Temperature
rate

root hair

1.

- No photosynthesis
- So does not need carbon dioxide from the air
- Closes to reduce water loss

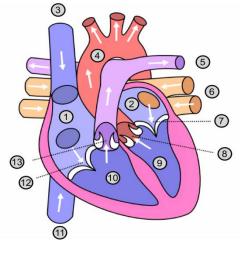
2.

- · transporting mineral ions
- · providing water to keep cells turgid in order to support the structure of the plant
- providing water to leaf cells for photosynthesis
- keeping the leaves cool (the conversion of water (liquid) into water vapour (gas) as it leaves the cells and enters the airspace requires heat energy.

Extension:

Transpiration will decrease because there is a lower water potential gradient between leaves and atmosphere as the atmosphere has more water vapour due to the water vapour leaving the leaves and being trapped inside the bag.

Knowledge Boss:


- It is only receiving water but not minerals such as nitrate which it needs to make amino acids and grow.
- · It may have been distressed from being cut from the plant.

The Heart

The circulatory system in mammals contain blood vessels acting as the and the			
heart acting as the	. Making blood always trave	el in one direction is the	
and the	It is a	circulatory	
system because blood goes to the heart and th	nen to the	and then back to the heart	
before going to the rest of the	The left side of the h	eart pumps	
blood and the right side	e pumps	blood. The	
heart rhythmically contracts in a	way. The tv	wo atria contract at the	
same time and push blood into the	Then the ventr	ricles contract pushing	
blood of the heart while the atria			

BIZARRE BIOLOGY: If your heart was out of your body and able to contract with its normal force it could spurt blood 11 metres out of the aorta.

Questions

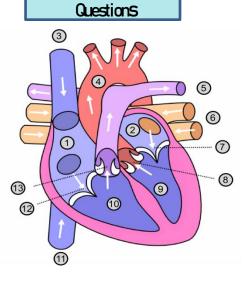
- Q1. Label the numbers with the structures (10)
- 1.
- 2.
- 3+11.
- 4.
- 5.
- 4
- 7+12.
- 8+13.
- 9.
- 10.

Q2. What is the advantage of a double circulatory system (1)

Extension

Why is the left side of the heart thicker than the right side?

Score /24



Knowledge Boss

The Heart

The circulatory system in mammals contain blood vessels acting as the and the			
heart acting as the	Making blood always travel in one direction is the		
and the	It is a circulatory		
system because blood goes to the heart and	hen to the and then back to the heart		
before going to the rest of the	The left side of the heart pumps		
blood and the right si	de pumps blood. The		
heart rhythmically contracts in a	way. The two atria contract at the		
same time and push blood into the	Then the ventricles contract pushing		
blood of the heart while the atr	a		
	coordinated pressure relax genated ventricles deoxygenated		

BIZARRE BIOLOGY: If your heart was out of your body and able to contract with its normal force it could spurt blood 11 metres out of the aorta.

- Q1. Label the numbers with the structures (10)
- 1.
- 2.
- 3+11.
 - 4.
 - 5.
- 4
- 7+12.
- 8+13.
- 9.
- 10.

Q2. What is the advantage of a double circulatory system (1)

Extension

Why is the left side of the heart thicker than the right side?

Score /24

The Heart

Tubes Oxygenated

Pump Deoxygenated

Pressure Coordinated

Valves Ventricles

Double Out

Lungs Relax

Body

Q1.

- 1. Right atrium
- 2. Left atrium
- 3+11. vena cava
- 4. Aorta
- 5. Pulmonary artery
- 6. Pulmonary vein
- 7+12. Atrio ventricular valves or mitral valve (7) and tricuspid valve (12)
- 8+13. Semilunar valves or aortic valve (8) and pulmonary valve (13)
- 9. Left ventricle
- 10. Right ventricle

Q2.

- Produce higher pressure from the heart (rather from the lungs) to go around the body
- Less pressure in the capillaries of the lungs which could get damaged by high pressure

Extension

To contract with more force to generate a higher pressure so blood leaving the aorta has enough pressure/push to go around the body.

Knowledge Boss

The right and left sides of the heart are separated to prevent blood without oxygen from mixing with blood that has oxygen.

Created by

lanebiologytutor.com

Blood vessels and blood

Blood Vessels		
are the largest bloo	d vessels and carry blo	od away from the
As these divide furthe	er into smaller ones the	y become
which connect into even smaller vessels calle	ed	These form an
extensive network supplying	blood to the ce	lls and
The capillaries connect up to	_ and then to	which all eventually join
towards the vena cava. Veins are unique in th	at they have	which prevents the
backflow of blood.		
Blood Composition		
Around 55% of blood is the liquid component of	called	which mostly contains
The most common co	ell type are the red bloo	d cells which carry oxygen
because of their The	white blood cells fight.	and help
control the immune response	are fragmer	nts of cells which are involved
with blood clotting when blood vessels are da BIZARRE BIOLOGY: If it was possible to put all you world 4 times. There are 4-6 m	imaged. r blood vessels in your bo nillion red blood cells in 1n	dy in a line it would wrap around the nl of blood.
. Name 3 substances transported in the bl	ood plasma. (3)	

- 1.
- 2. Explain two adaptations of red blood cells which make them efficient for carrying oxygen. (2)

Extension

Why do veins have large lumens?

Knowledge Boss

What problem would arise if a person had insufficient platelets in their blood?

Blood vessels and blood

Blood Vessels					
are the large	st blood vessels	and carry blood	away from the		
As these divide	e further into sma	aller ones they b	oecome		
which connect into even smaller vessels called			These	form an	
extensive network supplying	lying blood to the cells and				
ne capillaries connect up to and then to			which all	eventually join	
towards the vena cava. Veins are unique in that they have which			which pr	events the	
backflow of blood.					
Blood Composition					
Around 55% of blood is the liquid component called wh			_ which mostly	contains	
The most com	nmon cell type are	e the red blood	cells which car	ry oxygen	
because of their	The white bloc	od cells fight		and help	
control the immune response		_ are fragments	of cells which	are involved	
with blood clotting when blood vessels haemoglobin tissues plasm heart infections veins					

BIZARRE BIOLOGY: If it was possible to put all your blood vessels in your body in a line it would wrap around the world 4 times. There are 4-6 million red blood cells in 1ml of blood.

Questions

- 1. Name 3 substances transported in the blood plasma. (3)
- 2. Explain two adaptations of red blood cells which make them efficient for carrying oxygen. (2)

Extension

Why do veins have large lumens?

Score / 19

Blood vessels and blood

Arteries

Knowledge Boss

Heart

Arterioles
Capillaries
Oxygenated
Tissues
Venules
Veins
Valves
Plasma
Water
Haemoglobin
Infections
platelets
1.
Water, salts, ions, carbon dioxide, urea, hormones, food molecules, antibodies
2.
Bi-concave shape increase surface area to volume ratio
No nucleus so cell has more room to fit more haemoglobin molecules
Falancian
Extension As there is less pressure in the veins, having a larger lumen means it does not restrict the flow of blood as much/allows blood to pass through more easily.

If a person cuts them self then the blood clot will not work so well and they may continue to bleed.

Respiration

Respiration is one of the 7	processes. It is a process which happ	oens inside all				
cells and specifically inside the	of human cells. Respi	ration releases				
energy from the chemical bonds in food molecular	ules such as A	cell needs energy				
to be able to make cells, create new chemical bonds in protein synthesis,						
contracting muscles, active transport of	across cell membrane	s and producing				
heat to keep body temperature constant. Aerob	oic respiration requires	and anaerobic				
respiration does not. Most of the time in plant and animal cells aerobic respiration is sufficient but						
when a person they do not h	nave enough oxygen for the	and				
begin anaerobic respiration. Anaerobic respira	tion produces	which builds				
up inside the cells and the blood. This is harmful to cells and is transported to the						
to be broken down as well as inside the muscle cells. When enough oxygen is						
present the lactic acid is converted back into $_$	The additional oxy	gen needed to do				
this is called the	and is the reason a person cont	tinues to breathe				
heavily for a while after exercise. BIZARRE BIOLOGY: The record for holding breath under water for a human is 11.5 minutes. Sperm whales are able						

Questions

- 1. Write the word equation for aerobic respiration (1)
- 2. Write balanced chemical equation for aerobic respiration (1)

to hold their breath for 90 minutes.

3. Write the word equation for anaerobic respiration in humans (you do not need to know the chemical equation) (1)

Extension

Write the word equation for anaerobic respiration in yeast cells.

Score /15

Knowledge Boss

Respiration

Respiration is one of the	he 7 processes. It is a process which happens inside all					
cells and specifically insi	inside the of human cells. Respiration releases					
energy from the chemical bonds in food molecules such as A				A d	cell needs energy	
to be able to make cells, create new chemical bonds in protein synthesis,						
contracting muscles, act	ve transport of		acros	ss cell membranes	and producing	
heat to keep body temperature constant. Aerobic respiration requires and anaerobic						
respiration does not. Most of the time in plant and animal cells aerobic respiration is sufficient but						
when a person	they do not	have enough	oxygen i	for the	and	
begin anaerobic respirati	on. Anaerobic respir	ation produce	s		which builds	
up inside the cells and the blood. This is harmful to cells and is transported to the						
to be broken down as well as inside the muscle cells. When enough oxygen is						
present the lactic acid is	converted back into			The additional oxy	gen needed to do	
this is called the and is the reason a person continues to breathe						
heavily for a while after	xercise.					
	, 0			molecules	glucose (2X)	
lactic acid	mitochondria	oxyger	n e	exercises		

BIZARRE BIOLOGY: The record for holding breath under water for a human is 11.5 minutes. Sperm whales are able to hold their breath for 90 minutes

Questions

- 1. Write the word equation for aerobic respiration (1)
- 2. Write the balanced chemical equation for aerobic respiration (1)
- 3. Write the word equation for anaerobic respiration in humans (you do not need to know the chemical equation) (1)

Respiration

Life

Mitochondria

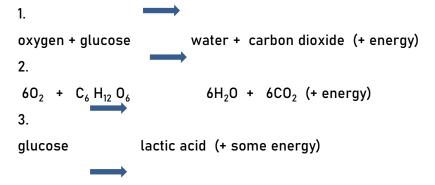
Glucose

New

Molecules

Oxygen

Exercises


Muscles

Lactic acid

Liver

Glucose

Oxygen debt

Extension

Glucose

carbon dioxide + ethanol (+ energy)

Knowledge Boss

Bread rises because of the carbon dioxide produced. It does not contain ethanol when baked because the ethanol evaporates with the heat of the oven. So dough is a little bit alcoholic